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Abstract—We have developed an innovative semianalyticaltech- ~ SAMPLE 8 mm DIA. DIELECTRIC RESONATOR
nique for various substrate material characterization. The devel- ~ MOUNTAREA -~ N\
oped technique is a measurement procedure and data-reduction -
formulation that takes into consideration the radiation loss in ares-
onant structure, allowing for a more effective means of dielectric- PORT #1
and conductor-loss determination for a microstrip ring resonator
and its substrate material. We separate dielectric and conductor
loss precisely, evaluate the contribution of each term in the overall
loss performance, and analytically predict the error in their respec- MAGNETIC COUPLING
tive predicted value. PROBES

PORT #2

Index Terms—Dbielectric and conductor losses, LTCC, Q Fig. 1. Dielectric resonator test set.
measurements.

Second, we evaluate thick-film-metallization conductivity
. INTRODUCTION using a dielectric-resonator technique [5]. This method utilizes

HE availability of new ceramic materials such as low-tenf dielectric puck that is suspended in a circular waveguide
perature co-fired ceramics (LTCC) and their compatibleAVity; one end plate of this cavity is normally the piece under
metallizations has fostered a need to assess their suitability {¢t: The utilized test fixture is shown in Fig. 1. We utilize the
microwave applications such as packaging and multilayer Rge@sured unloaded [6] to evaluate the surface resistance and,
circuits [1], [2]. For most of these applications, these substrdt€Nce. printed metallization layer conductivity. We use this test
materials are adequately characterized by their dielectric pi?-Perform nondestructive screening of the various thick-film
mittivity (<) and the metallization conductivity}. metallizations (inks). However, 'Fhe_ sensitivity of th!s test is not
We use two separate measurement technigues routinehyff9ugh to show the small variations between different inks,
evaluate the ceramics and their metallizations. These meas@8-» the difference af between 2x 10" S/m and 3< 10" S/m.
ments go hand in hand with the material development steps, dritfréfore, we have developed a more sensitive method by
are utilized to characterize these ceramics and their metalliy4?ich to resolve such differences, which is discussed in detail

tions at microwave frequencies. Specifically, we determine tifé the following sections.
dielectric constantz]), loss tangenttbn 6) of the ceramics, and
metallization’s conductivity ). II. DEVELOPED PROCEDURE

First, for dielectric properties, we use a simple, fast, and acCu-rpe fing resonator measurement technique was originally de-

rate measurement technique (dielectrometer [3], [4]). We us@ @ipeq py Troughton [7] to measure wavelengths and disper-
waveguide cavity resonant structure’aband for nondestruc- g, characteristics of microstrip lines. Troughton used the ring

tive evaluation of the dielectric constant and loss tangent of th fucture to avoid end effects associated with linear resonators
substrates. The sample is sandwiched between two half-reég,g

id qi | 4 usi q Js. 2 and 3 give a brief description of the simple calculations
hant waveguide structures, and Is evaluated using a mode-pRlsy for this method [8]. These calculations are based on the

turbation technique. This technique can also be utilized to Megss mption that the mean length of the microstrip line is mul-
sure the uniformity of the sample for a large wafer size. tiple wavelengths of the resonant mode on the microstrip ring.
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- Ring Resonator TABLE |
V4 / ALMINA SUBSTRATE WORK SHEET
O h{cm) f(GHz) Q(measured)
0.0254 0.8783 74.9
f z/\\ 0.0508 0.9111 115.5
/ ;,p“,,g Gap LTCC Substrate 0.1016 0.92664 1436

Input/OQutput

Fig. 2. Ring resonator, where the condition of resonancés (= n),), B. Algorithm Development
where), is the wavelength in the media, and the mode order. Meanwhile, the ] o ]
Q of the resonator is given B9 = 3/ 2cv., where3 = 27 /g, anda is The conductor loss for a microstrip line [8], [10] (printed on

the total loss per unit length. samplez) is approximately given by
wh
2
Qe = g —COIlStaIlt/\/_:gil/\/Ea--'aNp/m 1)

Z,W;

where this constant;; is a geometry-dependent paramefgy,
is the characteristic impedance of théne with width W;, w
is the radian frequency, and, is the permeability. Hence, if
we evaluate ¢.;0/?), then we are in essence evaluating this
geometry-dependent constant.

Similarly, the dielectric loss for a microstrip line printed on
sample %" is determined using the following formula [8], [10]:

Fig. 3. Typical measured spectrum of a ring resonator. ko, (Eem _ 1) tan S
Qg =
2er — Dvea
in a resonator structure, allowing for a more effective meansof ... is the free-space wavenumbery;
[e] T

determining dielectric and conductor loss for a microstrip ringlectric constant for sample ande
resonator and its substrate material. '

Insertion Loss (dB)

] ] ] i
1 2 3 4 5 6 7

Frequency (GHz )

= g;2 tan 6,,Np/m (2)

is the effective di-
andtan 6 are its relative
dielectric constant and loss tangent, respectively. Again, if we
evaluate vy, / tan &), then the ratio is the constant;{) param-
I1l. A LGORITHM DEVELOPMENT eter, which is related to geometry and not a material parameter.
The developed semianalytical method takes into account dMeanwhile, the radiation loss factat,() of a microstrip-line
commonly neglected source of measurement error, i.e., radifd resonator is approximately given by [11]
tion loss. It separates dielectric and conductor loss precisely,

evaluates the contribution of each term in the overall loss per- 1, [1—5—1—%} B2

formance, and analytically predicts the error in their respec- Oy = T r < T )

tive predicted value. This evaluation technique ensures the ac- Ao AS it Zoi

curate evaluation of any correction factor associated with those = gisr, ..., Np/m )

loss factor terms; thus, it accurately evaluates metallization cQlR ereg;s is

ductivity o, loss tangentan ¢, and radiation factor. In ad- ’

dition, this technique can be extended to accurately determine _(h S|
the ceramic proprieties over a wide frequency range by using 9i3 = Ao els Z,;

the higher order resonant modes of the ring resonator shown in ) S )
Fig. 3. and Z,; is the characteristic impedance of the ring resonator

microstrip line,n, is 1207q, A, is free-space wavelength, and
A Procedure similarly, (g;3) _is a function of geometry and frgquepcy. _
. . Now, for a given samplé(wherei = 1, 2, 3) with a ring strip
This method requires the measurement of the unlo&ded,yiqth ,, dielectric substrate height, and dielectric constant

[6], [8], [10] of three distinct ring resonators. For example,  the measured unload€? can be translated into a total loss
three different height substrates can be utilized to manufacty@torsq,; as given by

three ring-resonator structures with the same ring size (diameter

and width). Fortunately, this is relatively easy to accomplish Q = Bi/20; (5)
with LTCC substrates because thickness can be simply adjusted ) . L

by adding additional green tape layers. (LTCC material Y¥nerés: is the propagation constant, which is given by
fabricated by stacking unfired sheets of ceramic or green tape.
This differs from traditional polycrystalline substrate fabrica-
tion techniques, such as those used for alumina, in which thés extremely important here to evaluate the unloadedor-
substrates are made with one layer of green tape.) Hence, tbigtly and to take the coupling loss into consideration [6], other-
procedure is compatible with LTCC fabrication process. wise significant effects on the overall results will be introduced.

* 10% 4)

B; = 2x /ring_circumference (6)
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TABLE I
Al O3 LOSSWORKSHEET
INPUT §
Sanple Height Height Alpha Alpha Unkoadad Zo Epsileon. f
{inches) {am) Condwiorl Dicleciricl Q effective {GHz)
4120310 0010 0025 0021 0.002 49 221 7430 087830
ALO3-20 0020 0051 0013 0.002 1155 HBE 5,908 021110
AI203-40 0040 0102 000 0.002 1435 4852 £.630 092654
CALCULATED VALUE S
Sample heta Q Q alpha Lanbdafg) | Landhdai} W
# conducior | dielectric il Lambdaf) |
A1253-10 0.50 10352 1038.25 00231 12 5310 341570 0.0007
ARO320 0.50 15743 1072.24 00188 125220 329274 0.0015
A1203-40 0.50 M1 88 113582 00152 12 5263 323751 0.0051
beta= (2picFrsqitE off) Alpha Totd = AlphaC + AlphaD+ Alpla R Gll= AlphaC*qi(58)
Q corductor = (betal{ 2% alpha CJ)*3.68 = ((bek/2)*E ¥ total G12= &lpha D001
Q dielectric = (betalf 2* alpha D)F*8.63 Lanb da(g) = 2pi/b eta= o/ 1isqu(E eff)) G13=(Wlanmbda0)*2/Zc* 108 Ee 1.5
COEFFICIENT S
Gll= 0050574697 c21= 0.0613081 46 ¢il= 002167487
cl2= 21 2= 203 cx= 192
Gl3=  0125% c23= 0378233 3= 117%
RESULTS
Sanple Beight % Cornducinr | % Dielectric | % Radiadion Signa = 32117
{con) Condribution | Condribution | Contrdudion. TanDeba= 00002

A1203-10 0028 9713 1.77 110
A1203-20 0051 G270 264 456
A1203-40 0102 .78 311 17.11

Note 1: Alpha Conductor and Alpha Diglectric were calculated for ideal copper with
sigma = 5.8 X 1077, thickness = 5 microns, losstangent = 0.001

Discussion of measurement error analysis is given in the fc 100
lowing section. : D\ﬂ\
Now, the total loss factory;; can then be divided into three 80+

individual terms, as given by

. ® 60 —o— conductor loss
= g+ tan 8 i + 1 g; 7 g 1 —— dielectric loss
i Vo gi1 + tan 0 g2 + 7 gis ) 40 - —o— radiation loss

where we have used the LineCalc Program [12] to calculate t i

normalized conductor loss and dielectric loss factgts &nd 20 ,/
gi2, respectively) for a given substrate heightand we have .

. . . . v 0 4 I v
assumed an ideal copper metallization with- 5.8 x 107€/m, 0.02 0.04 0.08 0.08 0.10 0.12
metallization thickness of bm, and substrate loss factom 6
of 0.001. Substrate height (cm)
Hence, Fig. 4. Loss contributions for AlD; samples.
gi1 =0eiV5.8 (8) c. Measurements Errors
g2 IOédi/O.OOl. (9)

Uncertainty errors i} measurements can be translated into
. T n error range for the unknowns being evaluated, using the pre-
These calculations are repeated for three distinctive samp?es g 9 g P

. i vipusl fin matrix. The evaluation of th | ffi-
and, hence, we formulate the following set of equations ancf)usy definedG; mat € evaluation of these loss coe

evaluate the following relationshin based on calculatingac- cients is as accurate as the measurements of the ring resonator’s
. 9 P oA . Quantitatively, the following analysis can shed some light on
cording to() measurements:

the error that can be encountered in ¢heneasurements.
If we assume a slight error in the total loss factor measured

g1 912 913 1/ 1 Aaqy, as shown in the following equation:
g21 922 923 tan 0 | = | a2 | - (10)
g31 932 933 T Q3
g1 912 G13 1/\/o o1 Aoy
Obviously, solving the above matrix renders the three unknowns | g1  g22  g23 tan 6 | = | aw | + | Ao (1D

o, tané, andr. g31 932 ¢33 T a3 Aays
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TABLE Il
LTCC LOSSWORKSHEET
INPUT §
Sample Heighdt Height Alpha Alpha Q Zo Fpsilson f
(inches) (cm} Conducior | Dieleriric Toial effective | (GHz)
1 0018 0045 0013 0.002 82.4 694 5300 104020
2 0025 0064 [130)0)) 0.002 6.1 4422 5180 105250
3 008 0147 0007 0.002 1195 é301 4.890 108220
CALCULATED VALLUE §
Sanple beta Q Q alpha Lanbda(g) |Lambdail) W
# comducior dislocixic ipial Lambdail)
1 0.50 166 26 1045.60 00254 125203 28.8240 00018
2 0.50 20181 1066.30 00227 125237 28.5036 0.0022
3 0.50 32980 1119.11 00182 125279 27.734 0.0053
beta = (2pidyifrsq(E eff) Alpha Totd = AlphaC + AlphaD+ Alpla R Gll= AlphaC*sqrt(S8)
Q conductor= (beta/(2* alpha C*B.68 = ((behi2 P8 FEYQ total G12= Alpha DV0.00L L
Q dielectric = (betai{ 2* alpha D)Y6.68 Lanbdalg) = Zpitbeta= P 1sqt(E eff)) G13 = ((Wharb da0)"2)/Zo¥] GeS/E AT
Coefficients
Gll= 0.081548578 Ql= 0.028005344 G3l= 001589
Cl2= 2083 Q22= 2042 C32= 1945
Cl3= 557 GI3= 9516 CXi= 4.149
RESULTS
Sample Height | % Conducior | % Dieleciric | % Radiation e = 1.7761 J
(e} |{Conirdwion | Coniribuiion | Contrdbution TanDela = 0.0010
A1203-10 0046 8258 2.97 247
ARO3F2D 0084 814 @11 4735
A4)203-40 0.147 6553 10,30 pelis)

Mote'1: Alpha Conductor and Alpha Dielectric were calculsted for ideal copper with
sigma =58 x10°", thickness = § microns, losstangert = 0.001

then the error in the evaluation of the conductivity and tk 100
loss tangent can be determined from the second term of

right-hand terms of the following equations: 80+
1/\/5 a1 AOétl ® 604

and | =G | G Aaa | (2§ 7] T et

. —_— C 0S8

! 3 Ay 40- —o— radiation loss

Typical errors can be significantly high, especially for thick suk

strates. It is essential to correct the measiipadhlues for cou- 20 /
pling and loading effects. : ad

y ] . X| .12 .14 .1
IV. ALGORITHM VALIDATION 0.04 0.06 0.08 010 ° 0 016
Substrate height (cm)

First, we have used three different Alumina {8k) substrate
samples for the validation of the proposed algorithm. The§@. 5. Loss contributions for LTCC samples.
samples have thin-film metallization of Cu/Aubn thick, and
their conductivity was measured at 24 GHz using the diele@/e have calculatethn § =2.5x 10~*, which is consistent with
tric-resonator technique. Their measured thin-film conductivithe manufacturer's data ¢fin§ = 0.0001 — 0.0002. Table Il
was @ = 3.5x 107 S/m). The measure@ values are listed in shows the loss contribution due to conductor/dielectric/radia-
Table 1. tion losses in each case. The results are also shown graphically
In general, a lower limit of metallization conductivity can ben Fig. 4, where the losses are dominant by conductor loss for
predicted if we consider the thinnest sample and assume the dhim samples; thicker samples have relatively high radiation loss.
ductor loss is the only dominant loss factor. Based on Sample IFor the LTCC substrate evaluation, we used three indepen-
(the thinnest sample), we predicted a lower limit of the condudent measurements of three different height ceramic samples
tivity o to be 3.03x 10° S/m. Also, an estimate of the radiation(h1 = 0.4572 cm , h2 = 0.635 cm, h3 = 0.14732 cm), and
@ can be evaluated by measuring the unloa@edf the ring a silver metallization thickness of roughly 12— (which
resonator both when it is enclosed in a cavity under cutoff aesdceeds 2—3 times the skin depth at the operating frequencies
when the resonator is in an open structure and relate the diffe19.8 GHz). Using the thinnest sample whéte= 0.4572 cm,
ence to the effect of radiation. the lower limit of the conductivity i = 1.41x 107 S/m. Sim-
Meanwhile, based on our developed procedure, the condilarly based on our algorithm, we calculategn 6 = 0.001
tivity is o = 3.2x 107 S/m, and this value is consistent also wittand o = 1.77x 10° S/m. Additionally, the loss contribution
our dielectric resonator probe measurements of the conductividye to conductor/dielectric/radiation for each height is shown in
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5 semianalytical terms. The developed scheme is a measurement
procedure and data-reduction formulation that takes into con-
sideration the radiation loss in a resonant structure, enabling a
more effective means of dielectric- and conductor-loss determi-
4 4 nation for a microstrip ring resonator and its substrate material.
It separates dielectric and conductor loss precisely, evaluates the
contribution of each term in the overall loss performance, and
analytically predicts the error in their respective predicted value.

— ovs Q-Measurements Percentage Error
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Table lll, and Fig. 5 illustrates these results graphically, where
again, radiation losses can significantly exceed dielectric lossee
for thick substrates.

We have also utilized (12) [see (10)] to evaluate the ern
bars in the evaluation of the predicted values of both the mu
allization conductivity and substrate loss tangent. As an €
ample, for the alumina substrate, the metallization conductivi
is within (2.91-3.55)x 10’ S/m and the loss tangent is within
(0.0023-0.0026) for &5% Q-measurements error, as shown i
Figs. 6 and 7.
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