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Abstract—We have developed an innovative semianalytical tech-
nique for various substrate material characterization. The devel-
oped technique is a measurement procedure and data-reduction
formulation that takes into consideration the radiation loss in a res-
onant structure, allowing for a more effective means of dielectric-
and conductor-loss determination for a microstrip ring resonator
and its substrate material. We separate dielectric and conductor
loss precisely, evaluate the contribution of each term in the overall
loss performance, and analytically predict the error in their respec-
tive predicted value.

Index Terms—Dielectric and conductor losses, LTCC,
measurements.

I. INTRODUCTION

T HE availability of new ceramic materials such as low-tem-
perature co-fired ceramics (LTCC) and their compatible

metallizations has fostered a need to assess their suitability for
microwave applications such as packaging and multilayer RF
circuits [1], [2]. For most of these applications, these substrate
materials are adequately characterized by their dielectric per-
mittivity ( ) and the metallization conductivity ().

We use two separate measurement techniques routinely to
evaluate the ceramics and their metallizations. These measure-
ments go hand in hand with the material development steps, and
are utilized to characterize these ceramics and their metalliza-
tions at microwave frequencies. Specifically, we determine the
dielectric constant (), loss tangent ( ) of the ceramics, and
metallization’s conductivity ().

First, for dielectric properties, we use a simple, fast, and accu-
rate measurement technique (dielectrometer [3], [4]). We use a
waveguide cavity resonant structure at-band for nondestruc-
tive evaluation of the dielectric constant and loss tangent of these
substrates. The sample is sandwiched between two half-reso-
nant waveguide structures, and is evaluated using a mode-per-
turbation technique. This technique can also be utilized to mea-
sure the uniformity of the sample for a large wafer size.

Manuscript received May 30, 2000; revised March 22, 2001.
A. E. Fathy, S. M. Perlow, and A. Prabhu are with the Sarnoff Corporation,

Princeton, NJ 08543-5300 USA.
V. A. Pendrick was with the Sarnoff Corporation, Princeton, NJ 08543-5300

USA. She is now with the Intelligence and Information Warfare Directorate,
U.S. Army Communications–Electronics Command Research, Development,
and Engineering Center, Fort Monmouth, NJ 07703 USA.

B. D. Geller is with the Design Engineering Center, Mitsubishi Electric and
Electronics, Durham, NC 21213 USA.

E. S. Tormey was the Sarnoff Corporation, Princeton, NJ 08543-5300 USA.
She is now with Lamina Ceramics, Westampton, NJ 08060 USA.

S. Tani is with the Sharp Corporation, Nara 632-8567, Japan.
Digital Object Identifier 10.1109/TMTT.2002.803438.

Fig. 1. Dielectric resonator test set.

Second, we evaluate thick-film-metallization conductivity
using a dielectric-resonator technique [5]. This method utilizes
a dielectric puck that is suspended in a circular waveguide
cavity; one end plate of this cavity is normally the piece under
test. The utilized test fixture is shown in Fig. 1. We utilize the
measured unloaded [6] to evaluate the surface resistance and,
hence, printed metallization layer conductivity. We use this test
to perform nondestructive screening of the various thick-film
metallizations (inks). However, the sensitivity of this test is not
enough to show the small variations between different inks,
e.g., the difference of between 2 10 S/m and 3 10 S/m.
Therefore, we have developed a more sensitive method by
which to resolve such differences, which is discussed in detail
in the following sections.

II. DEVELOPEDPROCEDURE

The ring resonator measurement technique was originally de-
scribed by Troughton [7] to measure wavelengths and disper-
sion characteristics of microstrip lines. Troughton used the ring
structure to avoid end effects associated with linear resonators.
Figs. 2 and 3 give a brief description of the simple calculations
used for this method [8]. These calculations are based on the
assumption that the mean length of the microstrip line is mul-
tiple wavelengths of the resonant mode on the microstrip ring.
Pozar [8] and Wolff and Knoppik [9] indicated that the curva-
ture of these ring resonators can influence the resonance fre-
quency, and large resonators should be used. Obviously, if the
substrate material has a relatively low permittivity or the printed
lines are very wide, then the curvature effects must be taken into
account. Hence, this method is suitable for dielectric constant,
loss tangent, and metallization evaluation; however, it neglects
radiation loss, which can be significant for thick substrates. In
this paper, we present a measurement procedure and data-reduc-
tion formulation that takes into consideration the radiation loss
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Fig. 2. Ring resonator, where the condition of resonance is (2�r = n� ),
where� is the wavelength in the media, and the mode order. Meanwhile, the
Q of the resonator is given byQ = �= 2� , where� = 2�=�g, and� is
the total loss per unit length.

Fig. 3. Typical measured spectrum of a ring resonator.

in a resonator structure, allowing for a more effective means of
determining dielectric and conductor loss for a microstrip ring
resonator and its substrate material.

III. A LGORITHM DEVELOPMENT

The developed semianalytical method takes into account a
commonly neglected source of measurement error, i.e., radia-
tion loss. It separates dielectric and conductor loss precisely,
evaluates the contribution of each term in the overall loss per-
formance, and analytically predicts the error in their respec-
tive predicted value. This evaluation technique ensures the ac-
curate evaluation of any correction factor associated with those
loss factor terms; thus, it accurately evaluates metallization con-
ductivity , loss tangent , and radiation factor . In ad-
dition, this technique can be extended to accurately determine
the ceramic proprieties over a wide frequency range by using
the higher order resonant modes of the ring resonator shown in
Fig. 3.

A. Procedure

This method requires the measurement of the unloaded
[6], [8], [10] of three distinct ring resonators. For example,
three different height substrates can be utilized to manufacture
three ring-resonator structures with the same ring size (diameter
and width). Fortunately, this is relatively easy to accomplish
with LTCC substrates because thickness can be simply adjusted
by adding additional green tape layers. (LTCC material is
fabricated by stacking unfired sheets of ceramic or green tape.
This differs from traditional polycrystalline substrate fabrica-
tion techniques, such as those used for alumina, in which the
substrates are made with one layer of green tape.) Hence, this
procedure is compatible with LTCC fabrication process.

TABLE I
ALMINA SUBSTRATE WORK SHEET

B. Algorithm Development

The conductor loss for a microstrip line [8], [10] (printed on
sample ) is approximately given by

(1)

where this constant is a geometry-dependent parameter,
is the characteristic impedance of theline with width ,
is the radian frequency, and is the permeability. Hence, if
we evaluate ( ), then we are in essence evaluating this
geometry-dependent constant.

Similarly, the dielectric loss for a microstrip line printed on
sample “” is determined using the following formula [8], [10]:

(2)

where is the free-space wavenumber, is the effective di-
electric constant for sample, and and are its relative
dielectric constant and loss tangent, respectively. Again, if we
evaluate ( ), then the ratio is the constant () param-
eter, which is related to geometry and not a material parameter.

Meanwhile, the radiation loss factor ( ) of a microstrip-line
ring resonator is approximately given by [11]

(3)

where is

(4)

and is the characteristic impedance of the ring resonator
microstrip line, is , is free-space wavelength, and
similarly, ( ) is a function of geometry and frequency.

Now, for a given sample(where ) with a ring strip
width , dielectric substrate height , and dielectric constant

, the measured unloaded can be translated into a total loss
factors as given by

(5)

where is the propagation constant, which is given by

ring circumference (6)

It is extremely important here to evaluate the unloadedcor-
rectly and to take the coupling loss into consideration [6], other-
wise significant effects on the overall results will be introduced.
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TABLE II
Al O LOSSWORKSHEET

Discussion of measurement error analysis is given in the fol-
lowing section.

Now, the total loss factor can then be divided into three
individual terms, as given by

(7)

where we have used the LineCalc Program [12] to calculate the
normalized conductor loss and dielectric loss factors (and

, respectively) for a given substrate heightand we have
assumed an ideal copper metallization with /m,
metallization thickness of 5m, and substrate loss factor
of 0.001.

Hence,

(8)

(9)

These calculations are repeated for three distinctive samples
and, hence, we formulate the following set of equations and
evaluate the following relationship based on calculatingac-
cording to measurements:

(10)

Obviously, solving the above matrix renders the three unknowns
, , and .

Fig. 4. Loss contributions for AlO samples.

C. Measurements Errors

Uncertainty errors in measurements can be translated into
an error range for the unknowns being evaluated, using the pre-
viously defined matrix. The evaluation of these loss coeffi-
cients is as accurate as the measurements of the ring resonator’s

. Quantitatively, the following analysis can shed some light on
the error that can be encountered in themeasurements.

If we assume a slight error in the total loss factor measured
, as shown in the following equation:

(11)
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TABLE III
LTCC LOSSWORKSHEET

then the error in the evaluation of the conductivity and the
loss tangent can be determined from the second term of the
right-hand terms of the following equations:

(12)

Typical errors can be significantly high, especially for thick sub-
strates. It is essential to correct the measuredvalues for cou-
pling and loading effects.

IV. A LGORITHM VALIDATION

First, we have used three different Alumina (AlO ) substrate
samples for the validation of the proposed algorithm. These
samples have thin-film metallization of Cu/Au 5-m thick, and
their conductivity was measured at 24 GHz using the dielec-
tric-resonator technique. Their measured thin-film conductivity
was ( S/m). The measured values are listed in
Table I.

In general, a lower limit of metallization conductivity can be
predicted if we consider the thinnest sample and assume the con-
ductor loss is the only dominant loss factor. Based on Sample 1
(the thinnest sample), we predicted a lower limit of the conduc-
tivity to be 3.03 10 S/m. Also, an estimate of the radiation

can be evaluated by measuring the unloadedof the ring
resonator both when it is enclosed in a cavity under cutoff and
when the resonator is in an open structure and relate the differ-
ence to the effect of radiation.

Meanwhile, based on our developed procedure, the conduc-
tivity is S/m, and this value is consistent also with
our dielectric resonator probe measurements of the conductivity.

Fig. 5. Loss contributions for LTCC samples.

We have calculated , which is consistent with
the manufacturer’s data of . Table II
shows the loss contribution due to conductor/dielectric/radia-
tion losses in each case. The results are also shown graphically
in Fig. 4, where the losses are dominant by conductor loss for
thin samples; thicker samples have relatively high radiation loss.

For the LTCC substrate evaluation, we used three indepen-
dent measurements of three different height ceramic samples
( cm , cm, cm), and
a silver metallization thickness of roughly 12–18m (which
exceeds 2–3 times the skin depth at the operating frequencies

0.8 GHz). Using the thinnest sample where cm,
the lower limit of the conductivity is S/m. Sim-
ilarly based on our algorithm, we calculated:
and S/m. Additionally, the loss contribution
due to conductor/dielectric/radiation for each height is shown in
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Fig. 6. Effect of errors inQ measurements on the predicted metallization
conductivity estimate.

Fig. 7. Effect of errors inQmeasurements on the predicted dielectric-constant
loss-tangent estimate.

Table III, and Fig. 5 illustrates these results graphically, where
again, radiation losses can significantly exceed dielectric losses
for thick substrates.

We have also utilized (12) [see (10)] to evaluate the error
bars in the evaluation of the predicted values of both the met-
allization conductivity and substrate loss tangent. As an ex-
ample, for the alumina substrate, the metallization conductivity
is within (2.91–3.55) 10 S/m and the loss tangent is within
(0.0023–0.0026) for a 5% -measurements error, as shown in
Figs. 6 and 7.

V. CONCLUSIONS

We have developed a semianalytical technique, which is com-
patible with the LTCC fabrication process and accurately deter-
mines the ceramic proprieties over a wide frequency range. Our
newly developed technique for the evaluation of metallization
conductivity and the complex dielectric constant ensures the ac-
curate evaluation of any correction factor associated with those

semianalytical terms. The developed scheme is a measurement
procedure and data-reduction formulation that takes into con-
sideration the radiation loss in a resonant structure, enabling a
more effective means of dielectric- and conductor-loss determi-
nation for a microstrip ring resonator and its substrate material.
It separates dielectric and conductor loss precisely, evaluates the
contribution of each term in the overall loss performance, and
analytically predicts the error in their respective predicted value.
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